

VueCentric

Technical Specification

Version 1.0

VueCentric Technical Specification

Table of Contents

Table of Contents.. 2
Introduction... 5
Architecture... 5
Visual Interface Manager.. 8

Command Line Parameters ... 8
autologin... 8
blank ... 9
caption .. 9
debug .. 9
host=<hostname>:<port> ... 9
icon=<filename> .. 9
image=<filename> ... 9
noccow ... 9
nocompose.. 10
nodesign ... 10
nojoin.. 10
notimeout.. 10
noupdate ... 10
port=<port number> ... 10
server=<hostname>:<port>.. 10
showflags.. 11
template=<template>.. 11
updateall ... 11
verbose ... 11

VIM Automation Object.. 11
Properties.. 12
BringToFront.. 12
Popup.. 12

Component Support Services.. 14
Server Automation Object ... 14

Properties.. 14
Session Automation Object ... 14

Properties.. 15
CallRPCAbort .. 15
CallRPCAsync ... 16
CallRPCBool.. 16
CallRPCDate .. 17
CallRPCInt ... 17
CallRPCList ... 18
CallRPCStr ... 18
CallRPCText .. 19
CCOWJoin ... 19
CCOWLeave .. 19

November 8, 2001 2 Version 1.0

VueCentric Technical Specification

Connect... 20
ContextChangeBegin ... 20
ContextChangeEnd... 20
Disconnect.. 20
FindObjectByCLSID.. 21
FindObjectByIID.. 21
FindObjectByProgID ... 22
FindServiceByCLSID .. 22
FindServiceByProgID .. 22
EventFireLocal ... 23
EventFireRemote.. 23
EventSubscribe... 23
EventUnsubscribe... 24
RegisterObject.. 24
ReplaceParams ... 24
UnregisterObject .. 25

ICSS_SessionEvents.. 26
EventCallback .. 26
RPCCallback .. 26
RPCCallbackError.. 26

ICSS_Context .. 27
Properties.. 27
CommitContext .. 27
GetContext ... 27
Init .. 28
Reset ... 28
SetContext .. 28

User Context Object .. 28
Properties.. 29
HasKey ... 29
HasKeys ... 30
ESigValidate... 30

Patient Context Object... 31
Properties.. 31

Encounter Context Object ... 32
Properties.. 33
Prepare.. 33

Site Context Object.. 34
Properties.. 34

Context Change Events ... 34
Pending... 35
Committed.. 35
Canceled ... 35

Global Object Registry ... 35
Template Registry... 37

TObjectContainer ... 38

November 8, 2001 3 Version 1.0

VueCentric Technical Specification

TPanelEx .. 40
TScrollBoxEx... 40
TLabelEx.. 41
TToolbarEx .. 42
TPageControlEx ... 42
TTabSheetEx.. 43
TSplitterPaneEx ... 43
TPaneEx ... 44
TTreeViewEx... 45
TTreePaneEx.. 46

Object Repository ... 48
Glossary .. 49
MIDL Specification .. 50

Visual Interface Manager .. 50
Component Support Services .. 51

November 8, 2001 4 Version 1.0

VueCentric Technical Specification

Introduction

VueCentric is a multi-tiered, component-based clinical desktop application that supports a wide
range of clinical functions using standardized, plug-in objects. With the appropriate server-side
VistA/RPMS components, the fully implemented version has objects that support patient lookup,
clinical encounter documentation, on-line ordering, results retrieval, decision support, problem
list management, consult tracking and adverse reaction tracking, to list a few. Using a Visual
Interface Manager (VIM), power users may select from a palette of objects and construct a fully
functional application from discrete components. An application can be designed to meet the
needs of an individual, user class, site, or a specialized requirement. Once assembled, a
configuration has the appearance of a cohesive whole, belying its component-based origins.
Each component communicates with a middle tier Component Support Services (CSS) that
coordinates the activities of the objects so that the result is a seamless application. The CSS
provides event and context management and remote data access services to components within
its application space. The CSS also communicates with any CCOW-compliant context manager
to allow the application and its components to share context state with other CCOW-aware
applications running on the same desktop.

Architecture

Before one can support the interoperability of plug-in components, one must explicitly define the
rules for such interoperability. VueCentric defines a multi-tiered architecture that insures the
interoperability of components developed in accordance with the specification. From top to
bottom, the tiers are the Visual Interface Manager (which acts as a container and facilitator for
the individual components), the Component Support Services (which provide context and event
management and access to shared resources), and the underlying host system (currently DHCP
and RPMS, but other host systems are possible as well).

The Visual Interface Manager (VIM) acts as the glue that holds the individual components
together. It empowers the user to define the visual relationships among discrete components,
provides the ability to compose complex interfaces from individual visual elements, supports the
streaming of compositional entities to and from a central store, controls user-level access to
components, and can interrogate components for the resources they require and automatically
connect them to those resources.

The Component Support Services (CSS) provide shared resources that all components may
access and coordinate the activities of components. The CSS supports the concept of plug-in
services that extend the functionality of the middle tier in a fully extensible manner. Available
services include context objects that reflect the current state of the application, such as the
currently selected patient, the user who is logged in, or the clinical encounter that is being
referenced. Other plug-in services include unified signature, remote data views and clinical
reminders. The CSS also provides support for performing remote procedure calls to allow
objects to interact with the host system. The CSS is also a manager and producer of events that

November 8, 2001 5 Version 1.0

VueCentric Technical Specification

can notify components who choose to subscribe that, for example, the patient selection has
changed. Finally, the CSS can also participate in context changes that originate outside the
application. Because the CSS automatically detects the presence of a CCOW-compliant context
manager and registers as a participant, the VueCentric application may synchronize its context
with other CCOW-compliant applications residing on the same desktop.

While the target host systems for VueCentric will initially be DHCP and RPMS, the architecture
attempts to hide the origins of the host data from the consumers of these data (i.e., the
components) by encapsulating the access methods within the CSS. The degree to which this is
successful will largely be determined by our ability to devise common information models for
these data that can be mapped to different host representations. Much of the effort that remains
is the definition of a common information model for entities such as patient, user, and encounter.
There is much activity in this area within VHA (G-CPR) and without (CORBAMed, MSHUG,
HL7 RIM). It is our aim to leverage these efforts to evolve this specification.

In addition to the three tiers described above, the VueCentric architecture also includes external
data stores in the form of an Object Registry, a Template Registry, and an Object Repository.

The Object Registry provides information about available objects and their default
characteristics.

The Template Registry provides a globally accessible location for the storage of state-
information in a context-free format. It is used to store user interface configuration information.

The Object Repository is a store of components that are accessible to the VueCentric application.
The component repository allows an application to automatically update locally installed
components from a reliable source. The component repository may be implemented by a web
server, an ftp server, or any globally accessible directory, or any combination of all three. The
VueCentric architecture models the updating of components after that employed by web
browsers. Under that paradigm, an HTML document requests a component by a unique
identifier and version. If the requested component is already available locally, that version is
used. If it is not, the HTML document includes a URL reference that defines a source from
which the component may be downloaded and installed. The VueCentric application uses a very
similar approach that permits it to automatically propagate updates to existing components as
well as new components to individual workstations as they are needed.

November 8, 2001 6 Version 1.0

VueCentric Technical Specification

Visual Interface Manager

Container

Patient
Selection

Clinical
Note

Component
Support
Services Patient

User

RPC

Context
Participant

CCOW
Context
Manager

 Legacy
System

Events

Object Repository

The VueCentric Architecture

Global
Information

Store
Template
Registry

Object
Registry

Electronic
Signature

CCOW
App #2

CCOW
App #3

November 8, 2001 7 Version 1.0

VueCentric Technical Specification

Visual Interface Manager

The Visual Interface Manager (VIM) provides a number of services:

• Acts as an intelligent container for components
• Provides access to persistent state information
• Defines the visual relationship of components to one another
• Possesses a design feature that allows the tailoring of the environment under user

control
• Initializes and prepares the Component Support Services for use by components
• Provides menu management

When the user logs in, the VIM accesses the Object and Template Registries residing on the host
system to retrieve information about the requested configuration. Using this information, the
VIM reconstructs the visual interface. The requested configuration may be the user’s private
configuration or one that is defined for a specific user role or function. Specific templates may be
requested using the appropriate command line parameter when invoking the VIM. In the
absence of such, the VIM retrieves the user’s customized template if one exists or a default
template that is determined by the host configuration and can be specific to the user, user class,
department or institution.

Before each component is loaded into the visual interface, the VIM references the Object
Registry to determine if the object is available and if the user is permitted to use it. If the latest
version of the object is currently installed, the VIM retrieves it from the Object Repository. If all
of these conditions are met, the VIM instantiates a copy of the component, performs any
initializations specified by the Object Registry, and restores any saved state information (e.g., the
color of the component as set by the user). The VIM then registers the component with the
Component Support Services (CSS). The purpose of the registration process is to allow the CSS
to determine if the component implements any of the event interfaces it or its plug-in services
publishes. For each implemented interface, the CSS connects the interface to the corresponding
event producer. Thus, all a component must do to subscribe to an event is to simply implement
the corresponding interface. The registration process takes care of the rest.

Command Line Parameters

The VIM executable recognizes a variety of command line parameters. Some of these are
provided to facilitate object development and testing. Command line parameters are case-
insensitive may be preceded by a hyphen or forward slash, but neither is required. Some
parameters accept a value, which should be separated from the parameter by an equal sign
(without leading or trailing spaces). Parameter values with imbedded spaces must be surrounded
by quotation marks. The VIM recognizes the following parameters

autologin

November 8, 2001 8 Version 1.0

VueCentric Technical Specification

Automatically prompts for user login upon startup. This differs from the default behavior where
the VIM initially presents a blank desktop and the user clicks the desktop to initiate login. In the
default mode, the user is returned to the blank desktop upon logging out. With autologin
enabled, the user is immediately presented with an authentication request upon starting the VIM
and the VIM terminates upon logging out.

blank

Suppresses the loading of a template upon login. Instead, the VIM presents the user with a blank
desktop. This is useful for testing objects and for designing templates where an initial
configuration is not desired.
.
caption

Sets the caption for the application’s main form. The caption may also be set in design mode as
a desktop property and saved as a template.

debug

Sets the CSS to debug mode. This activates debug mode for the RPC broker and enables a
special trace mode that causes the CSS to output remote procedure call data via the TRACE
event. Any object subscribing to the TRACE event may view this data.

host=<hostname>:<port>

Sets the name of the target host system. This is identical to the server command line parameter.
See the description of that parameter for more details.

icon=<filename>

Allows the specification of an icon file. When specified, the contained icon will be used in place
of the application’s default icon. This can also be set as a desktop property when in design mode
and saved as part of a configuration.

image=<filename>

Allows the specification of an image file. When specified, the contained image (several image
formats are supported) is displayed in place of the blank desktop when the VIM is in the logged
out state. This can also be set as a desktop property when in design mode and saved as part of a
configuration.

noccow

Disables CCOW interaction. When this parameter is specified, the VIM does not instruct the
CSS to attempt to contact a CCOW context manager even if one is present. This is useful for

November 8, 2001 9 Version 1.0

VueCentric Technical Specification

debugging and when a second instance of the VIM is desired that does not share context with
other applications.

nocompose

Disables compose mode even if user possesses the necessary security key. This is provided
primarily for debugging purposes.

nodesign

Disables design mode even if user possesses the necessary security key. This is provided
primarily for debugging purposes.

nojoin

Disables automatic joining of CCOW context. By default, the VIM instructs the CSS to connect
to a CCOW context manager (if one is detected and the noccow command line parameter is not
specified) and join the common context. If nojoin is specified, the CSS still connects to the
context manager, but does not join the context. Unlike the noccow parameter, the user still
retains the option of manually joining the common context by right-clicking the CCOW icon in
the lower right corner of the application window and selecting the appropriate popup menu
choice.

notimeout

Disables auto timeout. By default, the VIM logs out after a site-specified period of keyboard and
mouse inactivity. This option causes the VIM to ignore the timeout.

noupdate

Disables the automatic updating of objects. When this parameter is specified, the VIM does not
retrieve objects from the Object Repository. This parameter is provided primarily for debugging
purposes. It may also have application in environments that use system administrator tools to
push software updates to workstations.

port=<port number>

Sets the port number for the host connection. Note that the port number may also be specified
as part of the server command line parameter.

server=<hostname>:<port>

Specifies information about the target host. If this parameter (or the functionally equivalent host
parameter) is not specified, the CSS will either select the default host or present the user with a
choice of hosts. Which action is taken depends upon how the RPC broker has been configured
on the workstation. If the port number is omitted, the default port for the host will be used.

November 8, 2001 10 Version 1.0

VueCentric Technical Specification

showflags

Shows active command line flags in the status panel. This is useful for debugging purposes to
have a visual indicator of which command line flags are in effect.

template=<template>

Loads the named template upon login. By default, the VIM loads the user’s personal
configuration template upon login or, in the absence of one, the user’s default template as
determined by site configuration. This parameter overrides this default behavior.

updateall

Overrides the default behavior of updating objects only if they are not present or newer versions
are available in the Object Repository by forcing updates to occur every time an object is
requested. This is provided primarily for debugging purposes.

verbose

Displays additional status information for debugging.

VIM Automation Object

Components typically have minimal interaction with the VIM. Rather, they react passively to
control by the container. The component’s principal interaction is with the CSS or another
component. The VIM does, however, register an automation interface with the CSS that is
accessible by components. This interface is defined as follows:

Programmatic Id: CIA_VIM.VIM
Class GUID: A45DCEDF-22F6-4F2B-BA12-DF5D5765ED68
Default Interface: IVIM

November 8, 2001 11 Version 1.0

VueCentric Technical Specification

Properties

Property Datatype Access Description
Caption

WideString RW The caption of the application’s main form.

Font

IFontDisp RW The default font for the application.
Changes to this property are automatically
propagated to all objects that also publish a
font property.

Icon

WideString RW The name of the file that contains an icon
to be displayed in place of the application’s
default icon. If null, the application’s
default icon is used.

Image

WideString RW The name of the file that contains an image
to be displayed while the application is in a
logged out state. If null, no image is
displayed.

Interface Methods:

BringToFront

Parameter Datatype Description
ObjRef

IUnknown IUnknown interface reference of the object to be
brought to the foreground.

<return value>

WordBool Returns true if the referenced object was found.

This function may be invoked to insure that the referenced object is visible within the visual
interface. If other windows obscure the object, it is brought to the top of the Z-order. If the
object is located on a tab or pane that is not currently active, that tab or pane will be
automatically activated.

Popup

Parameter Datatype Description
ObjRef

IUnknown IUnknown interface reference of the object to be
displayed modally.

Title

WideString The caption to be displayed for the popup dialog.

<return value>

WordBool Returns true if the referenced object was found.

This function causes the referenced object to appear in a modal window. The VIM accomplishes
this by temporarily moving the object from its parent within the interface to a modal window.
When the modal window is closed, the object is returned to its original position.

November 8, 2001 12 Version 1.0

VueCentric Technical Specification

November 8, 2001 13 Version 1.0

VueCentric Technical Specification

Component Support Services

The Component Support Services (CSS) provide a suite of services that allow objects to access
context information (current user, current patient, current encounter, etc.), host-based data
(through RPC calls) and receive event notifications (change in selected patient, for example).
Unlike the VIM, which is a standalone executable, the CSS is implemented as an in-process
COM server that executes in the background and is shared by all objects within an application
instance. Unlike previous versions that defined a single automation server with over a dozen
interfaces, the CSS implements two automation servers and defines four interfaces. Many of the
interfaces previously declared by the CSS that provided access to context information are
implemented as separate automation objects that are registered with the CSS at runtime.

The two automation servers defined by the CSS are the Server (CIA_CSS.CSS_Server) and the
Session (CIA_CSS.CSS_Session) objects. The sole purpose of the Server object is to instantiate
and maintain a shared instance of the Session object. A component cannot directly create an
instance of the Session object. Rather, it must first create an instance of the Server object and
request a reference to the Session object. Having obtained such a reference, the component has
no further need of the Server object and may release it.

Server Automation Object

The server automation object has the following definition:

Programmatic Id: CIA_CSS.CSS_Server
Class GUID: 8C061A95-8FCE-41A7-A806-66B02E5CE6EF
Default Interface: ICSS_Server

Properties

Property Datatype Access Description
Session

ICSS_Session R Reference to the session automation object.

Components desiring access to middle tier services should do so by first creating an instance of
the server automation object and then obtaining a reference to the session automation object by
reading the value of the Session property. Once this is done, the reference to the server object
can be released.

Session Automation Object

The session automation object provides access to middle tier services. While the session object
has a programmatic identifier and class GUID, it cannot be instantiated directly, but must be
requested from the server automation object. The session automation object has the following
definition:

November 8, 2001 14 Version 1.0

VueCentric Technical Specification

Programmatic Id: CIA_CSS.CSS_Session
Class GUID: 8C061A95-8FCE-41A7-A806-66B02E5CE6EF
Default Interface: ICSS_Session
Event Interface: ICSS_SessionEvents

Properties

Property Datatype Access Description
CCOWState

Enum R The current CCOW state. Possible values are:
ccowBroken = Not participating
ccowChanging = Context change in progress
ccowJoined = Participating
ccowNone = No context manager
ccowDisabled = Disabled by host

DebugMode

WordBool RW Indicates whether or not the CSS is in debug
mode.

DomainName

WideString R The domain name of the currently connected
host. If there is no active connection, returns
null.

HostAddress

WideString R The IP address of the host system that is
currently connected. If no connection is
active, returns null.

HostDateTime

TDateTime R The current date and time as returned by the
host system. If there is no active connection,
returns a NULL_DATE value.

HostName

WideString R The name of the host system that is currently
connected. If no connection is active, returns
null.

HostPort

Integer R The port number of the active connection. If
no connection is active, returns 0.

Param(Name) OleVariant

RW Allows an object to register an arbitrary
named parameter and value that can be
accessed by other objects and by the
ReplaceParams method. The Name
parameter may consist only of alphanumeric
characters and the underscore.

CallRPCAbort

Parameter Datatype Description
Handle

Integer Handle of the asynchronous call to abort.

This procedure causes the asynchronously executing remote procedure identified by Handle to
be aborted.

November 8, 2001 15 Version 1.0

VueCentric Technical Specification

CallRPCAsync

Parameter Datatype Description
RPCName

WideString Name of the remote procedure to be invoked. If
an execution context other than the default is
desired, precede the RPC name with a context
name and the ‘^’ delimiter.

Parameters

OleVariant Parameters to be passed to the remote procedure.

Callback

ICSS_SessionEvents Callback interface to be invoked on completion
of the remote procedure.

PlainText

WordBool If true, data returned to the callback interface is
in plain text format. Otherwise, format is in
comma text format.

<return value>

Integer Handle that uniquely identifies this
asynchronous call.

This function invokes the remote procedure named in RPCName in asynchronous mode, passing
it the parameters listed in Parameters (see description of CallRPCList for details on formatting
of parameters). A negative return value indicates that the remote procedure failed. Otherwise, the
return value is a unique handle that identifies the call. Upon completion of the remote procedure,
the callback interface identified by the Callback parameter is invoked. See a description of the
ICSS_SessionEvents interface for details.

CallRPCBool

Parameter Datatype Description
RPCName

WideString Name of the remote procedure to be invoked. If an
execution context other than the default is desired,
precede the RPC name with a context name and the
‘^’ delimiter.

Parameters

OleVariant Parameters to be passed to the remote procedure.

<return value> WordBool Output of remote procedure call as a Boolean value.

This function invokes the remote procedure named in RPCName, passing it the parameters listed
in Parameters (see description of CallRPCList for details on formatting of parameters). The
return value is a Boolean result.

November 8, 2001 16 Version 1.0

VueCentric Technical Specification

CallRPCDate

Parameter Datatype Description
RPCName

WideString Name of the remote procedure to be invoked. If an
execution context other than the default is desired,
precede the RPC name with a context name and the
‘^’ delimiter.

Parameters

OleVariant Parameters to be passed to the remote procedure.

<return value> TDateTime Output of remote procedure call as a TDateTime
datatype.

This function invokes the remote procedure named in RPCName, passing it the parameters listed
in Parameters (see description of CallRPCList for details on formatting of parameters). The
return value is a TDateTime datatype.

CallRPCInt

Parameter Datatype Description
RPCName

WideString Name of the remote procedure to be invoked. If an
execution context other than the default is desired,
precede the RPC name with a context name and the
‘^’ delimiter.

Parameters

OleVariant Parameters to be passed to the remote procedure.

<return value> Integer Output of remote procedure call as a 32-bit integer
value.

This function invokes the remote procedure named in RPCName, passing it the parameters listed
in Parameters (see description of CallRPCList for details on formatting of parameters). The
return value is a 32-bit integer value.

November 8, 2001 17 Version 1.0

VueCentric Technical Specification

CallRPCList

Parameter Datatype Description
RPCName

WideString Name of the remote procedure to be invoked. If an
execution context other than the default is desired,
precede the RPC name with a context name and the
‘^’ delimiter.

Parameters

OleVariant Parameters to be passed to the remote procedure.

<return value> WideString Output of remote procedure call in CommaText
format.(see discussion).

This function invokes the remote procedure named in RPCName, passing it the parameters listed
in Parameters. The return value is a string in CommaText format. This format can be converted
to a TStrings descendant by setting it into the CommaText property.

The Parameters argument may be any OleVariant datatype, including a variant array. If it is
scalar (non-array) datatype, it is passed as a single argument to the remote procedure call. If it is
an array, each element of the array is passed as an argument. If an array element is itself an
array, it is passed as a list argument to the remote procedure call.

CallRPCStr

var
 lstXYZ: TStringList;
begin
 lstXYZ:=TStringList.Create;
 lstXYZ.CommaText:=Shell.CallRPCList(‘FETCH’,[Name,SSN]);
 ...
end;

Parameter Datatype Description
RPCName

WideString Name of the remote procedure to be invoked. If an
execution context other than the default is desired,
precede the RPC name with a context name and the
‘^’ delimiter.

Parameters

OleVariant Parameters to be passed to the remote procedure.

<return value> WideString Output of remote procedure call as a string.

This function invokes the remote procedure named in RPCName, passing it the parameters listed
in Parameters (see description of CallRPCList for details on formatting of parameters). The
return value is a string.

November 8, 2001 18 Version 1.0

VueCentric Technical Specification

CallRPCText

Parameter Datatype Description
RPCName

WideString Name of the remote procedure to be invoked. If an
execution context other than the default is desired,
precede the RPC name with a context name and the
‘^’ delimiter.

Parameters

OleVariant Parameters to be passed to the remote procedure.

<return value> WideString Output of remote procedure call in plain text
format.(see discussion).

This function invokes the remote procedure named in RPCName, passing it the parameters listed
in Parameters. The return value is a string in plain text format. This format can be converted to
a TStrings descendant by setting it into the Text property.

The Parameters argument may be any OleVariant datatype, including a variant array. If it is
scalar (non-array) datatype, it is passed as a single argument to the remote procedure call. If it is
an array, each element of the array is passed as an argument. If an array element is itself an
array, it is passed as a list argument to the remote procedure call.

CCOWJoin

Parameter Datatype Description
<return value> WordBool True if the CSS was successful in joining the

common context.

This function instructs the CSS to contact a CCOW-compliant context manager and register
itself as a context participant. If no context manager is present, CCOW support has been
disabled, or the attempt to join the common context failed, the function returns false.

This function is reserved for use by the VIM.

CCOWLeave

This parameterless procedure causes the CSS to suspend its participation in the CCOW context.
If no context manager is present, or the CSS is not an active participant, no action is taken.

This function is reserved for use by the VIM.

November 8, 2001 19 Version 1.0

VueCentric Technical Specification

Connect

Parameter Datatype Description
Server

WideString Name of the remote system to be connected. The
format is:
<username>:<password>@<hostname>:<port>
Any portion may be omitted. If the hostname is
omitted, either the default host is selected or a list of
available hosts is presented, depending on the
workstation configuration. If the port is omitted, the
host’s default RPC port is used. If username and
password are omitted, the host requests
authentication.

<return value>

Boolean True if the connection request was successful.

This function connects to the remote server named in Server. The return value indicates the
success of the request. Note that currently the CSS implements a single, shared instance of the
RPC broker. This means that only a single host connection may be active at a given time. This
restriction may be relaxed in future versions to allow concurrent connections to multiple hosts
and, possibly, multithreaded connections to the same host.

ContextChangeBegin

Context objects use this parameterless procedure to initiate a context change sequence.
Consecutive calls to this procedure are nested so that the context change sequence does not
actually begin until an equal number of ContextChangeEnd procedure calls have been invoked.

ContextChangeEnd

This parameterless procedure decrements the context change reference count and invokes a
context change sequence when the reference count reaches zero.

Disconnect

Parameter Datatype Description
Survey

WordBool If true, all internal context participants for all
contexts are surveyed before disconnecting. If any
participant declines, the disconnect is aborted.

<return value> WordBool

True if the disconnect was successful. This would
only be false if the Survey parameter was true and a
context participant declined.

November 8, 2001 20 Version 1.0

VueCentric Technical Specification

This procedure terminates the connection to the remote server. If no connection is active, the
call has no effect.

FindObjectByCLSID

Parameter Datatype Description
CLSID

GUID The globally unique identifier of the object class to
be located.

Last

IUnknown Interface reference of the previously located
interface.

<return value>

IUnknown Returns a reference to the object implementing the
class identified by CLSID or nil if none is found.

This function searches the list of registered objects to find one that implements the class
identified by CLSID. If the Last parameter is not nil, the search begins following that object’s
entry in the list. In this manner, one can iterate through multiple object instances of the same
class.

FindObjectByIID

Parameter Datatype Description
IID

GUID The globally unique identifier of the interface to be
located.

Last

IUnknown Interface reference of the previously located
interface.

<return value>

IUnknown Returns a reference to the object implementing the
interface identified by IID or nil if none is found.

This function searches the list of registered objects to find one that implements the interface
identified by IID. If the Last parameter is not nil, the search begins following that object’s entry
in the list. In this manner, one can iterate through all objects implementing a particular interface.

November 8, 2001 21 Version 1.0

VueCentric Technical Specification

FindObjectByProgID

Parameter Datatype Description
ProgID

WideString The programmatic identifier of the object to be
located.

Last

IUnknown Interface reference of the previously located
interface.

<return value>

IUnknown Returns a reference to the object identified by
ProgID or nil if none is found.

This function searches the list of registered objects to find one that possesses the programmatic
identifier specified by ProgID. If the Last parameter is not nil, the search begins following that
object’s entry in the list. In this manner, one can iterate multiple object instances of the same
class.

FindServiceByCLSID

Parameter Datatype Description
CLSID

GUID The globally unique identifier of the service’s class
to be located.

<return value>

IUnknown Returns a reference to the service implementing the
class identified by CLSID or nil if none is found.

Request a reference to the service identified by CLSID. If the service is not already running, the
CSS starts the service. If the service is not located, a nil reference is returned. Otherwise, the
return value is a reference to the service’s default interface.

FindServiceByProgID

Parameter Datatype Description
ProgID

WideString The programmatic identifier of the service to be
located.

<return value> Iunknown Returns a reference to the service identified by
ProgID or nil if the service could not be located.

Request a reference to the service identified by ProgID. If the service is not already running, the
CSS starts the service. If the service is not located, a nil reference is returned. Otherwise, the
return value is a reference to the service’s default interface.

November 8, 2001 22 Version 1.0

VueCentric Technical Specification

EventFireLocal

Parameter Datatype Description
EventType

WideString The name of the event type to fire.

EventStub

WideString Additional information specific to the event type.

Broadcasts an event of type EventType to all subscribers within the application’s process space.
The effect is identical to an event generated by the host system in that callbacks are made to
subscribers via the ICSS_SessionEvents interface. Unlike events generated by the host system,
events generated by this call are limited to subscribers within the application’s process space.

EventFireRemote

Parameter Datatype Description
EventType

WideString The name of the event type to fire.

EventStub

WideString Additional information specific to the event type.

Recipients

WideString Optional recipient list. If no recipients are specified,
the event is broadcast to all active users on the same
host.

Broadcasts an event of type EventType to all subscribers connected to the same host. If
recipients are specified, distribution is limited to those recipients only. Unlike local events,
events generated by this call are sent directly to the host system, which then redirects them to the
appropriate recipients. Once an event reaches the recipient, it is further redirected to subscribers
to that event within the recipient’s application process space through a mechanism identical to
local events (see the ICSS_SessionEvents interface).

EventSubscribe

Parameter Datatype Description
EventType

WideString The name of the event for which a subscription is
desired.

Callback

ICSS_SessionEvents A reference to the interface that will be called when
an event of the specified type is received.

This method enters a subscription for the named EventType. The caller must specify a reference
to a callback interface that will be invoked when an event of the specified type is triggered. See
a description of the ICSS_SessionEvents interface for more information.

November 8, 2001 23 Version 1.0

VueCentric Technical Specification

EventUnsubscribe

Parameter Datatype Description
EventType

WideString The name of the event for which a subscription is to
be revoked.

Callback

ICSS_SessionEvents A reference to the interface that was specified in the
original EventSubscribe call.

This method revokes a subscription for the named EventType. The caller must specify a
reference to the same callback interface that was specified in the original EventSubscribe call.
Note that subscriptions are automatically revoked when an object is unregistered.

RegisterObject

Parameter Datatype Description
ObjRef

IUnknown IUnknown interface reference of the object to be
registered.

The VIM uses this procedure call to register an object with the CSS. The CSS uses the
IUnknown interface reference to query the object for the interfaces it supports. When the CSS
generates an event for an interface supported by the object, it performs a callback on that
interface to communicate the event to the object. In this manner, objects may subscribe to an
event by simply implementing the corresponding interface. The RegisterObject procedure takes
care of connecting the object’s event interface (i.e., event sink) to the event source.

ReplaceParams

Parameter Datatype Description
Source

WideString The value to be parsed.

<return value>

WideString Returns the input value with all references to
replaceable parameters replaced by the
corresponding values.

This function parses the input value, replacing references to replaceable parameters with their
corresponding values. Replaceable parameters are of the format $(<parameter name>,<format
specifier>) where the format specifier is optional. The following parameters are recognized:

November 8, 2001 24 Version 1.0

VueCentric Technical Specification

Parameter Name Description
Session.<property>

Where <property> is any property in the Session automation object.

Param.<name> Where <name> is the name of a parameter created by a call to the
SetParam method.

<object>.<property>

Where <property> is any property in the context object specified by
<object>. Context objects provide a name when they are registered as
a CSS service. This is the name used for the <object> specifier. For
example, to access a patient’s name, use the format
PATIENT.NAME.

DEFDIR

The path to the current working directory.

WINDIR

The path to the windows directory.

SYSDIR

The path to the system directory.

This function is especially useful for setting properties of components when the values are not
known at design time.

UnregisterObject

Parameter Datatype Description
ObjRef

IUnknown IUnknown interface reference of the object to be
unregistered.

The VIM uses this procedure call to remove event subscriptions for the object identified by the
ObjRef interface reference.

November 8, 2001 25 Version 1.0

VueCentric Technical Specification

ICSS_SessionEvents

This is the default outgoing interface for the Session automation object and is used to notify
components of events of interest. The methods currently defined are:

EventCallback

Parameter Datatype Description
EventType

WideString Identifies the type of event that has been signaled.

EventStub

WideString Contains data describing details of the event that has
been signaled. The format of this parameter is event
specific.

The CSS invokes this callback when an event to which an object has subscribed has fired.

RPCCallback

Parameter Datatype Description
Handle

Integer Unique handle of the remote procedure whose
results are being returned.

Data

WideString The return data of the remote procedure call in
CommaText or PlainText format.

The CSS invokes this callback when an asynchronous RPC call has completed. The callback is
made to the object that performed the asynchronous call. The Handle identifies which RPC is
being reported (this is the value returned by the CallRPCAsync method of the Session
automation object). Data represents any data returned by the RPC. If the CallRPCAsync
method invoked the remote procedure with a PlainText parameter value of True, Data will be in
plain text format (CR/LF-delimited), otherwise it is in comma text format.

RPCCallbackError

Parameter Datatype Description
Handle

Integer Unique handle of the remote procedure generating
the error.

ErrorCode

Integer An error code value returned by the remote
procedure.

ErrorText

WideString A brief text message describing the error.

When an asynchronous RPC generates an exception, this callback method is called instead of the
RPCCallback method.

November 8, 2001 26 Version 1.0

VueCentric Technical Specification

ICSS_Context

This interface is defined by the CSS and must be implemented by every context object. The
interface properties and methods allow the CSS to interact with the context object and make
context change notifications on its behalf.

Properties

Property Datatype Access Description
Callback

GUID R The GUID of the callback interface that
will be used to notify subscribers of
changes in this context object. Must be a
descendant of ICSS_ContextEvents.

ContextName

WideString R The name by which this context will be
advertised. This is the name that may be
referenced in the ReplaceParams method
of the Session object.

Pending

WordBool R If true, the context object has an
uncommitted pending context.

Priority

Integer R Used to sequence processing of context.
Context objects with higher priorities
(lower values) are processed before those
of lower priorities.

CommitContext

Parameter Datatype Description
Accept

WordBool If true, the object should commit the pending
context. If false, any pending context is cleared.

The CSS invokes this method to instruct a context object to commit or cancel its pending
context.

GetContext

Parameter Datatype Description
Pending

WordBool If true, the context object should return its pending
context. Otherwise, the active context is returned.

<return value> WideString

The active or pending context in CCOW format.

The CSS uses this method to request context information from the context object in preparation
for initiating a CCOW context change. If the object does not produce a CCOW context, it
should return a null string.

November 8, 2001 27 Version 1.0

VueCentric Technical Specification

Init

The CSS invokes this method to instruct the context object to initialize itself to some default
state. It is up to the context object to determine what default state to assume. For example, a
patient context object might retrieve the last patient accessed by the current user.

Reset

The CSS invokes this method to instruct the context object to reset itself to a state that represents
no context.

SetContext

Parameter Datatype Description
Context

WideString Context the object is to assume, in CCOW format.

<return value>

WordBool If true, the object successfully set its context.
If false, the Context parameter contains no context
information relevant to this object.

The CSS invokes this method to instruct the context object to initialize its pending context to
conform to the context specified in Context. If the object is unable to comply, it should reset its
pending context to a null state. If the Context parameter contains no context information
relevant to the context object, the object should set its pending context to its default state and
return false.

User Context Object

This interface defines properties and methods for accessing the global user object.

November 8, 2001 28 Version 1.0

VueCentric Technical Specification

Properties

Property Datatype Access Description
CanSignOrders

WordBool R Indicates whether or not the user can sign
orders.

Esig

WideString R Returns the electronic signature code for
the user. Reading this property causes the
user to be prompted for their electronic
signature code which, if valid, is then
returned in encrypted form as the value of
this property.

Handle

Integer R The host-specific handle identifying the
user (a.k.a., DUZ).

IsProvider

WordBool R Indicates if the user belongs to a provider
class.

Name WideString R Full name of the user in the format Last,
First, Middle.

NoOrdering

WordBool R If true, ordering is disabled on the host
system.

OrderRole

Integer R Enumerated type indicating role of user in
ordering process. Can be one of:
0 = none; 1 = clerk; 2 = nurse; 3 =
physician; 4 = medical student; 5 = invalid
data.

Service

Integer R The internal identifier for the service to
which the user belongs

ServiceName String R The external form of the service.

TimeOut

Integer R Idle timeout, in seconds.

UserClass

Integer R Enumerated type indicating ordering key
possessed by user. Can be one of:
0 = none; 1 = OREMAS (ward clerk); 2 =
ORELSE (nurse); 3 = ORES (physician).

HasKey

Parameter Datatype Description
KeyName

WideString Name of the security key.

<return value>

WordBool True if the user possesses the specified security key.

This function indicates whether or not the user has the specified security key.

November 8, 2001 29 Version 1.0

VueCentric Technical Specification

HasKeys

Parameter Datatype Description
KeyNames

WideString Multiple key names separated by circumflexes.

<return value>

WideString Multiple Boolean values separated by circumflexes.
Each value corresponds to a key name in the
KeyNames parameter.

This function indicates whether or not the user has specified security keys. This function is
useful when checking for the presence of multiple security keys. Since it requires only a single
RPC call, it is more efficient that making one call for each key.

ESigValidate

Parameter Datatype Description
Signature

WideString The user’s unencrypted electronic signature code
that is to be validated.

<return value>

WideString If the Signature code is valid, the return value is the
encrypted form of the electronic signature code.
Otherwise, the return value is a null string.

This function validates the specific electronic signature code for the current user and returns the
encrypted form of the code if the input is determined to be valid, or a null string otherwise.

November 8, 2001 30 Version 1.0

VueCentric Technical Specification

Patient Context Object

This interface defines properties and methods for accessing the global patient object.

Properties

Property Datatype Access Description
AdmitDate

TDateTime R If an inpatient, this is the date and time of
the current admission.

Age

Single R The patient’s age, computed from the
current date.

Attending

WideString R If an inpatient, the name of the patient’s
attending physician.

DOB

TDateTime R The patient’s date of birth.

DOD Date R Date of the patient’s death.

Handle

Integer RW The host-specific handle identifying the
patient (a.k.a., DFN). See description that
follows for discussion of writable
properties.

HRN

WideString RW Health record number for patient. See
description that follows for discussion of
writable properties.

ICN

WideString RW The patient’s integration control number if
one has been assigned. See description that
follows for discussion about writable
properties.

IsInpatient WordBool R True if the patient is currently an inpatient.

IsRestricted

WordBool R

IsServiceConnected WordBool R If true, the patient has a service-connected
disability.

Name

WideString R The patient’s full name, formatted as Last,
First, Middle.

Location

Integer R If an inpatient, the internal identifier of the
ward location.

LocationName

WideString R If an inpatient, the name of the ward
location.

PercentServiceConnected

Integer R Returns the service-connected status of the
patient as a percentage.

PrimaryProvider

WideString R The name of the patient’s primary care
provider.

November 8, 2001 31 Version 1.0

VueCentric Technical Specification

PrimaryTeam

WideString R If an inpatient, the name of the patient’s
primary team.

RoomBed

WideString R If an inpatient, the room and bed number.

Sex

WideString R Indicates the patient’s sex. One of:
M = male; F = female; U = unknown.

Specialty Integer R Treating specialty.

SSN

WideString R The patient’s social security number,
formatted as nnn-nn-nnnn.

Patient properties that are writable (Handle and ICN) may be conditionally modified by an
application. This means that requesting a change to one of these properties is honored only if all
context participants (both local and global) agree to the change. Therefore, an application must
not assume that the change occurred but instead should either check the value after the
assignment or wait for acknowledgement of the change (the ICSS_PatientEvents event set).

Encounter Context Object

This interface defines properties and methods for accessing the global encounter object.

November 8, 2001 32 Version 1.0

VueCentric Technical Specification

Properties

Property Datatype Access Description
DateTime

TDateTime R The date and time of the encounter.

Inpatient

WordBool R True if this is an inpatient encounter.

LocationName

WideString R The name of the encounter location.

LocationAbbr

WideString R The abbreviated name of the encounter
location.

Location

Integer R The unique identifier of the encounter
location.

Prepared

WordBool R True if a valid encounter has been
recorded.

ProviderName

WideString R The name of the provider associated with
the encounter.

Provider

Integer R The unique identifier of the provider
associated with the encounter.

RoomBed

WideString R The room and bed # for an inpatient.

Standalone

WordBool R A true value indicates that this is a
standalone encounter.

VisitCategory

Byte R Indicates the category of the visit. One of:

VisitID

WideString R The unique identifier for the encounter.
(not currently implemented)

VisitStr

WideString RW A concatenation of the Location,
DateTime, and VisitCategory properties.

This interface also implements the following method:

Prepare

Parameter Datatype Description
Filter

Integer Applies the corresponding filter to the provider list.

<return value>

WordBool True if a valid encounter was prepared.

Invokes the encounter dialog that allows the user to define an encounter context.

November 8, 2001 33 Version 1.0

VueCentric Technical Specification

Site Context Object

This interface defines properties and methods for accessing the global site object. This object
describes the site that is currently connected.

Properties

Property Datatype Access Description
Address1

WideString R First line of the facility’s address.

Address2

WideString R Second line of the facility’s address

City

WideString R City in which facility is located.

DomainName

WideString R The name of the domain.

Handle

Integer R The unique internal identifier for the
facility.

FacilityID

WideString R The unique identifier for the facility.

LongName

WideString R The full name of the facility.

ShortName

WideString R The abbreviated name of the facility.

State

WideString R State in which facility is located.

ZipCode

WideString R Zipcode of the facility.

Context Change Events

Each context object must declare a callback interface that is a descendant of the
ICSS_ContextEvents interface defined by the CSS. Though all such callback interfaces
implement the identical methods, the GUIDs of each are unique to the context object that
declares them. In this way, the CSS is able to notify subscribers of context change events on
behalf of the respective context objects (because it declares and, therefore, understands the base
interface), but is able to keep the subscriptions distinct. Components wishing to be notified of
context changes must implement the callback interface declared by the context object of interest.
Components should never implement the ICSS_ContextEvents interface directly, but rather the
descendant interface declared by the context object of interest (e.g., the ICSS_PatientEvents
interface if the patient context object is the target).

November 8, 2001 34 Version 1.0

Note that because the method names are the same for all context change event interfaces
(because they all have the same ancestor), components implementing more than one context

VueCentric Technical Specification

change interface must explicitly map the COM method names to the internal method names that
implement them. The technique, called method aliasing, for accomplishing this varies by
programming language.

Every context change callback interface declares the following methods:

Pending

Parameter Datatype Description
Silent

WordBool If true, the component should not interact with the
user to confirm the context change. This parameter
will always be true if the context change request
originated from the CCOW context manager.

<return value>

WideString If the event subscriber wishes to contest a change in
patient context, it should return a non-null string
containing a brief description of the reason.

The CSS invokes this function whenever a request has been made to change the selected patient,
but before the change has taken place. Subscribers wishing to participate in the decision to
change the context for the corresponding context object may respond to this event by either
prompting the user to save pending changes, warning the user that changes may be lost, and/or
contesting the context change by returning a non-null value to the caller. Note, however, that if
the Silent parameter is true, only the latter option should be exercised. A component should
never request user interaction if the Silent parameter is true.

Committed

The CSS invokes this parameterless procedure after the pending context has been committed.
Subscribers may respond by examining the corresponding context object and updating their state
accordingly.

Canceled

The CSS invokes this parameterless procedure when a pending context change has been
canceled. This can occur when a subscriber contests a pending change.

Global Object Registry

The Object Registry provides information about components that are supported by VueCentric.
Only components that are registered may be accessed. The object registry is stored in the
VUECENTRIC OBJECT REGISTRY (#892.2) file on the host system. The fields in this file are:

November 8, 2001 35 Version 1.0

VueCentric Technical Specification

Entity Name Datatype Description
ALLKEYS

Boolean If true, the user must possess all keys listed in the
KEYS multiple to access the object. Otherwise,
possession of any one key is sufficient.

CATEGORY

Pointer This is the category under which the object is to be
classified. This controls where the object appears in
the ‘add object’ dialog of the VIM design editor.
Separate subcategories with the backslash character.

DESCRIPTION

Word
Processing

A description of the object’s purpose and any special
procedures required for its implementation.

DISABLED

Boolean If set to true, the object cannot be loaded by a
configuration. Use this feature to take an object out
of service.

HEIGHT

Integer The default height, in pixels, when an object is
created in design mode.

HIDDEN

Boolean If true, the object does not appear in the Add Object
dialog.

INITIALIZATION

String These are the property initializers for an object.
When an object is created, the properties listed here
are initialized to the specified values. The format is
<name>=<value>. Separate multiple initializers
with a carriage return character.

KEYS

Pointer
(multiple)

Security keys required to access this object. The
ALLKEYS field determines whether all listed keys
or any one key is required for access. If no keys are
specified, access is unrestricted.

LOCATION

Pointer The type of parent control the object is intended for.
This affects where the object appears in the ‘add
object’ dialog of the VIM design editor.

MULTIPLE

Boolean If true, multiple instances of the object are allowed
to exist concurrently in the same application
instance.

NAME

String This is a brief text description of the object. This is
object name that is displayed by the ‘add object’
dialog.

PROGID

String This is the programmatic identifier of the object and
is the primary key for the file.

PROPEDIT

Boolean If true, the object’s internal property editor is
invoked by the VIM rather than the default, generic
property editor.

REGRESS

Boolean If true, the object is retrieved from the repository if
the repository version differs from the local version,
even if the latter is newer.

REQUIRED

Word
Processing

This is a list of URLs of additional files an object
needs to run. For example, if an object requires a
DLL to be installed, place a URL pointing to the

November 8, 2001 36 Version 1.0

VueCentric Technical Specification

DLL here. Separate multiple entries with a carriage
return character.

SERVICE

Boolean If true, the object represents a service that can be
registered with the middle tier. Objects flagged as
such are not displayed in the ‘add object’ dialog. If
an object lists a service in its USES multiple, that
service is automatically started when the object is
loaded.

SIDEBYSIDE

Boolean If true, objects are registered in such a manner as to
support the co-existence of multiple versions of the
object on the same workstation. This is useful in
situation where multiple host systems are accessed,
each with different client version requirements.

STREAMABLE

Word
Processing

These are properties whose values are to be saved
when a snapshot of the visual interface is taken.
These property values are restored when the
snapshot is loaded. Separate multiple property
names with a carriage return character.

SOURCE

String This is a URL which may be used to retrieve a copy
of the object’s executable image. If no explicit path
information is provided, the default path defined by
the host system is used.

USES

Pointer
(multiple)

This is a list of other objects that are required by this
object. In contrast to entries in REQUIRED (which
are only updated if the parent object is updated), the
VIM performs version management on each entry in
this multiple.

VERSION

String This is the version of the object that is available
from the URL named in SOURCE.

WIDTH

Integer The default width, in pixels, when an object is
created in design mode.

Template Registry

A template is a snapshot of a visual interface. It contains all of the information required to
reconstruct a visual interface including state information (like size, alignment, or color) and the
parent-child relationships of the visual elements. Templates are used to create varied
configurations of the VueCentric application and to create “compound objects” that can be
dropped into the visual interface as if they were discrete objects.

Templates are stored in the VUECENTRIC TEMPLATE REGISTRY (#892.3) file. This file
consists of two fields: a unique identifier and a word processing field.

November 8, 2001 37 Version 1.0

VueCentric Technical Specification

When a user makes changes to his/her visual interface and saves them as his/her personal
configuration, the VIM writes this information to the Template Registry. For user configuration
templates, the template name begins with the ‘$’ character followed by the user’s unique internal
identifier. For application level templates, the template name begins with the ‘%’ character.
Both user and application templates differ from standard templates in that they also contain
application level settings (e.g., default font, custom menus) whereas standard templates do not.

The format of state information varies by the type of associated object. Currently, eight stock
object types (some of which are compound objects) are supported: object containers
(TObjectContainer), panels (TPanelEx), scroll boxes (TScrollBoxEx), labels, (TLabelEx), page
controls (TpageControlEx / TTabSheetEx), toolbars (TToolbarEx), tree views (TTreeViewEx /
TTreeViewPane) and splitter panes (TsplitterPaneEx / TPaneEx). Note that none of these are
actually COM objects. Rather, they are specialized descendants of Delphi VCL controls. The
actual COM objects are associated with and maintained by the object container (one per
container). The object container is responsible for mediating the interaction between the
contained COM object and the visual interface.

The entities stored under each registry node are as follows by object type:

TObjectContainer

Additional entities may be stored under an object container node that represents saved property
values of the contained COM object. These entities always begin with an underscore to prevent
name collisions with entities that pertain to the container itself. The object registry determines
which properties of the contained object are saved.

Entity Datatype Description
CLASS

String The class name of the control (TObjectContainer).

ALIGN

Integer The alignment of the control relative to its parent.
This is the equivalent of the TAlign enumerated
datatype.

HEIGHT

Integer The height of the control in pixels.

LEFT

Integer The position of the leftmost portion of the control in
the coordinate system of its parent.

PROGID

String The programmatic identifier of the contained COM
object.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

TOP

Integer The position of the topmost portion of the control in
the coordinate system of its parent.

WIDTH

Integer The width of the control in pixels.

November 8, 2001 38 Version 1.0

VueCentric Technical Specification

November 8, 2001 39 Version 1.0

VueCentric Technical Specification

TPanelEx

This is an implementation of a panel control upon which other controls may be placed.

Entity Datatype Description
CLASS

String The class name of the control (TPanelEx).

ALIGN

Integer The alignment of the control relative to its parent.
This is the equivalent of the TAlign enumerated
datatype.

HEIGHT

Integer The height of the control in pixels.

LEFT

Integer The position of the leftmost portion of the control in
the coordinate system of its parent.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

TOP

Integer The position of the topmost portion of the control in
the coordinate system of its parent.

WIDTH

Integer The width of the control in pixels.

TScrollBoxEx

Similar to a panel control, this control automatically displays scrollbars if any control placed
upon it is outside the current visual boundaries.

Entity Datatype Description
CLASS

String The class name of the control (TScrollBoxEx).

ALIGN

Integer The alignment of the control relative to its parent.
This is the equivalent of the TAlign enumerated
datatype.

HEIGHT

Integer The height of the control in pixels.

LEFT

Integer The position of the leftmost portion of the control in
the coordinate system of its parent.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

TOP

Integer The position of the topmost portion of the control in
the coordinate system of its parent.

WIDTH

Integer The width of the control in pixels.

November 8, 2001 40 Version 1.0

VueCentric Technical Specification

TLabelEx

This is a simple label that can be used to identify other components in the interface.

Entity Datatype Description
CLASS

String The class name of the control (TPanelEx).

ALIGN

Integer The alignment of the control relative to its parent.
This is the equivalent of the TAlign enumerated
datatype.

CAPTION

String The caption property of the control.

HEIGHT

Integer The height of the control in pixels.

LEFT

Integer The position of the leftmost portion of the control in
the coordinate system of its parent.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

TOP

Integer The position of the topmost portion of the control in
the coordinate system of its parent.

WIDTH

Integer The width of the control in pixels.

November 8, 2001 41 Version 1.0

VueCentric Technical Specification

TToolbarEx

This is a toolbar control that may have multiple controls (usually buttons) placed upon it. It
automatically arranges the controls it contains.

Entity Datatype Description
CLASS

String The class name of the control (TToolbarEx).

ALIGN

Integer The alignment of the control relative to its parent.
This is the equivalent of the TAlign enumerated
datatype.

HEIGHT

Integer The height of the control in pixels.

LEFT

Integer The position of the leftmost portion of the control in
the coordinate system of its parent.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

TOP

Integer The position of the topmost portion of the control in
the coordinate system of its parent.

WIDTH

Integer The width of the control in pixels.

TPageControlEx

This is a page control that can have multiple tabbed pages (TTabSheetEx) on it.

Entity Datatype Description
CLASS

String The class name of the control (TPageControlEx).

ALIGN

Integer The alignment of the control relative to its parent.
This is the equivalent of the TAlign enumerated
datatype.

HEIGHT

Integer The height of the control in pixels.

LEFT

Integer The position of the leftmost portion of the control in
the coordinate system of its parent.

MULTILINE

Boolean If true, the page control wraps tabs onto multiple
lines if necessary. If false, scroll buttons appear if
there are too many tabs to display within the current
window dimensions.

PAGECOUNT

Integer The number of tab sheets owned by the control.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the

November 8, 2001 42 Version 1.0

VueCentric Technical Specification

user.
TOP

Integer The position of the topmost portion of the control in
the coordinate system of its parent.

TOPPAGE

Integer The index of the tab sheet which is initially on top.

WIDTH

Integer The width of the control in pixels.

TABPOSITION

Integer The location of tabs on the page control. This is the
equivalent of the TTabPosition enumerated datatype.

TTabSheetEx

These are the tab sheets that may appear on a page control.

Entity Datatype Description
CLASS

String The class name of the control (TTabSheetEx).

CAPTION

String The caption property of the control.

COLOR

TColor The color of the associated tab.

PAGEINDEX

Integer Order in which tab sheet appears on the parent
control.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

TSplitterPaneEx

This is a component with multiple panes separated by splitter bars that may be manually resized.

Entity Datatype Description
CLASS

String The class name of the control (TSplitterPaneEx).

ALIGN

Integer The alignment of the control relative to its parent.
This is the equivalent of the TAlign enumerated
datatype.

BORDER Boolean If true, the control has a visible border

HEIGHT

Integer The height of the control in pixels.

LEFT

Integer The position of the leftmost portion of the control in
the coordinate system of its parent.

ORIENTATION Integer The orientation of panes with the control. Possible

November 8, 2001 43 Version 1.0

VueCentric Technical Specification

 values are 0 for horizontal and 1 for vertical.
PANECOUNT

Integer The number of panes displayed by the control.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

TOP

Integer The position of the topmost portion of the control in
the coordinate system of its parent.

WIDTH

Integer The width of the control in pixels.

TPaneEx

These are the individual panes that comprise a splitter pane control.

Entity Datatype Description
CLASS

String The class name of the control (TPaneEx).

COLOR

TColor The color of the associated pane.

HEIGHT

Integer The height of the control in pixels.

PANEINDEX

Integer The position of the pane within the parent control.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

WIDTH

Integer The width of the control in pixels.

November 8, 2001 44 Version 1.0

VueCentric Technical Specification

TTreeViewEx

This is a component with a tree view on one side and a pane view on the other. Each node of the
tree has an associated pane that becomes visible in the pane view when the node is selected.

Entity Datatype Description
CLASS

String The class name of the control (TTreeViewEx).

ALIGN

Integer The alignment of the control relative to its parent.
This is the equivalent of the TAlign enumerated
datatype.

BORDER Boolean If true, the control has a visible border

DEFAULT

String The path of the node whose pane is to appear when
the control is initially loaded.

HEIGHT

Integer The height of the control in pixels.

IMAGE

String Specifies a file containing icon resources that are to
be used by the control.

LEFT

Integer The position of the leftmost portion of the control in
the coordinate system of its parent.

ORIENTATION

Integer The orientation of the control. If 0, the tree view is
on the left. If 1, the tree view is on the right.

SIZE

Boolean If true, the control display large icons.

SPLITTER

Integer The position of the vertical splitter.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

TOP

Integer The position of the topmost portion of the control in
the coordinate system of its parent.

WIDTH

Integer The width of the control in pixels.

November 8, 2001 45 Version 1.0

VueCentric Technical Specification

TTreePaneEx

These are the individual panes that comprise a splitter pane control.

Entity Datatype Description
CLASS

String The class name of the control (TTreePaneEx).

COLOR

TColor The color of the associated pane.

IMAGE

Integer The index of the icon to be displayed.

PATH

String The path of the node. A path consists of the node
caption preceded by the captions of each of its
ancestor nodes, separated by backslashes.

TAG

Integer The tag property of the control. If nonzero, the
control and all its children cannot be modified by the
user.

VISIBLE

Boolean If true, the node is initially visible.

The following is a sample of a saved user configuration. Each node (whose parentage is
represented as a sequence of three-digit hexadecimal numbers separated by backslashes)
represents a specific visual element. The entities stored under each node represent the state of
that visual element at the time the snapshot was taken. In the example below, the highlighted
node is a container (TObjectContainer) for an ActiveX control. The actual ActiveX control is
identified by the PROGID entity (CWPatientID.PatientID). Other entities denote state
information about the object container. Entities starting with an underscore are property values
of the contained ActiveX control.

November 8, 2001 46 Version 1.0

\003\002\004\
CLASS=TPanelEx
TAG=0
LEFT=0
TOP=0
HEIGHT=52
WIDTH=1016
ALIGN=1
\003\002\004\000\
CLASS=TObjectContainer
TAG=0
LEFT=1
TOP=1
HEIGHT=50
WIDTH=247
ALIGN=3
PROGID=cwPatientID.PatientID
_COLOR=15780518

VueCentric Technical Specification

When reconstructing a saved configuration, the VIM performs a depth-first traversal of the
subtree, instantiating the visual elements described by each node as it goes. The parent-child
relationships represented in the subtree are reproduced as parent-child relationships in the visual
interface. In the example above, the highlighted node has an ancestor that is a panel control.
The panel control itself has two ancestors (as can be ascertained from the node path), though
their identities are not shown in this example.

November 8, 2001 47 Version 1.0

VueCentric Technical Specification

Object Repository

The Object Repository provides a centralized location for storing the most up-to-date versions of
VueCentric components. The Object Repository may be implemented on a web server, an FTP
server, a shared network directory, or any combination of these. The Object Repository works in
concert with the Object Registry to permit the automatic updating of components. The Object
Registry provides information about the components stored in the Object Repository including
version information and a URL to be used to locate an updated version of a component.

Typically a site will implement its Object Repository in one of the three locations mentioned.
However, it is entirely possible that a site may implement components that are developed and
maintained by another site. In such a scenario, it would be logical to retrieve updates to such a
component directly from the originating site, typically using the FTP or HTTP protocol.
However, the implementing site must still update its Object Registry to indicate when a new
version is available.

When a component is requested by the VIM, which can occur in design mode when a component
is dropped into the visual interface or during the loading of a saved configuration, the VIM
checks the locally installed version of the component with the version available from the Object
Repository. If the Object Repository has a newer version, or if the component has not yet been
installed on the local machine, the VIM downloads a copy of the component from the Object
Repository (using the URL specified in that component’s Object Registry entry). It then
automatically registers the updated component before instantiating it within the interface. Other
than a slightly perceptible delay while the download occurs, this process is essentially
transparent to the user and occurs without direct intervention.

November 8, 2001 48 Version 1.0

VueCentric Technical Specification

Glossary

ActiveX object – A COM object that implements specific standard interfaces.

Component Object Model (COM) – A Microsoft specification that defines an architecture that
permits the interoperability of objects independent of their implementation.

COM object – An object that complies with Microsoft’s Component Object Model.

Connection point – An outgoing interface on a server object to which a client may connect to
receive event notifications. If the server object supports it, multiple clients may concurrently
connect to the same connection point.

Dispatch interface – A special kind of interface whose methods and properties may be
discerned and accessed at run-time. Also known as an automation interface, this kind of
interface is used to control objects from languages that support late binding (e.g., script
languages like VB Script).

Dual interface – An interface that implements a dispatch interface and a standard v-table
interface.

GUID – (Globally unique identifier) This is an identifier assigned to COM objects, interfaces,
and type libraries that is guaranteed (at least, statistically) to be unique across all systems.

Incoming interface – A collection of methods and properties implemented by an object. Clients
of the implementing object invoke its incoming interface methods.

OLE object – Synonymous with COM object.

Outgoing interface –Objects do not implement outgoing interfaces. Rather they indicate their
ability to act a client for the interface to objects that do implement it. Server objects often use
outgoing interfaces to talk back to their clients (and in that capacity, the role of client and server
is reversed).

Programmatic identifier – This is a brief, text descriptor of a COM object. While uniqueness is
not guaranteed for programmatic identifiers, it is frequently advantageous to refer to an object by
its programmatic identifier rather than its GUID.

November 8, 2001 49 Version 1.0

VueCentric Technical Specification

MIDL Specification

The following are the Microsoft IDL specifications for the principal VueCentric interfaces.

Visual Interface Manager

[uuid(C1FD48D2-2C3B-42B4-AB77-AD90F8C7BA8B),
 version(3.0),
 helpstring("Visual Interface Manager Library")
]
library CIA_VIM
{ importlib("stdole2.tlb");
 importlib("CSS.dll");
 importlib("CSSUser.dll");
 importlib("STDVCL40.DLL");
 [uuid(B96FFF00-E72A-4C9C-BBEA-F0C93864BE3D),
 version(1.0),
 helpstring("Dispatch interface for controlling VIM"),
 dual,
 oleautomation
]
 interface IVIM: IDispatch
 { [propget, id(0xFFFFFDFA), helpstring("Sets the text that appears in the application\'s title bar.")]
 HRESULT _stdcall Caption([out, retval] BSTR * Value);
 [propput, id(0xFFFFFDFA), helpstring("Sets the text that appears in the application\'s title bar.")]
 HRESULT _stdcall Caption([in] BSTR Value);
 [propget, id(0xFFFFFE00), helpstring("Sets the default font for the application.")]
 HRESULT _stdcall Font([out, retval] IFontDisp ** Value);
 [propput, id(0xFFFFFE00), helpstring("Sets the default font for the application.")]
 HRESULT _stdcall Font([in] IFontDisp * Value);
 [propget, id(0xFFFFFDF5), helpstring("Sets the background image that appears when the application is
logged out.")]
 HRESULT _stdcall Picture([out, retval] BSTR * Value);
 [propput, id(0xFFFFFDF5), helpstring("Sets the background image that appears when the application is
logged out.")]
 HRESULT _stdcall Picture([in] BSTR Value);
 [propget, id(0x00000001), helpstring("Sets the icon associated with the application.")]
 HRESULT _stdcall Icon([out, retval] BSTR * Value);
 [propput, id(0x00000001), helpstring("Sets the icon associated with the application.")]
 HRESULT _stdcall Icon([in] BSTR Value);
 [id(0x00000002), helpstring("Brings the specified object to the foreground")]
 HRESULT _stdcall BringToFront([in] IUnknown * ObjRef, [out, retval] VARIANT_BOOL * Value);
 [id(0x00000003), helpstring("Pops up the specified object in a modal window")]
 HRESULT _stdcall Popup([in] IUnknown * ObjRef, [in] BSTR Title, [out, retval] VARIANT_BOOL * Value
);
 [propget, id(0x00000005), helpstring("Provides access to the VIM status bar")]
 HRESULT _stdcall StatusBar([in] long Index, [out, retval] BSTR * Value);
 [propput, id(0x00000005), helpstring("Provides access to the VIM status bar")]
 HRESULT _stdcall StatusBar([in] long Index, [in] BSTR Value);
 };
 [uuid(A45DCEDF-22F6-4F2B-BA12-DF5D5765ED68),
 version(1.0),
 helpstring("VIM Object")
]
 coclass VIM
 { [default] interface IVIM;
 interface ICSS_SessionEvents;
 interface ICSS_UserEvents;
 };
};

November 8, 2001 50 Version 1.0

VueCentric Technical Specification

Component Support Services

[uuid(8B8F116E-35A6-4654-8E22-DAAFDB1839A7),
 version(4.0),
 helpstring("Component Support Services")
]
library CIA_CSS
{ importlib("stdole2.tlb");
 importlib("STDVCL40.DLL");

 [uuid(8448917E-D5A0-43A3-9B58-F964D7ACCC49),
 version(1.0),
 helpstring("Dispatch interface for Session Object"),
 dual,
 oleautomation
]
 interface ICSS_Session: IDispatch
 { [id(0x00000001)]
 HRESULT _stdcall Connect([in] BSTR HostName, [out, retval] VARIANT_BOOL * Value);
 [id(0x00000002)]
 HRESULT _stdcall Disconnect([in] VARIANT_BOOL Survey, [out, retval] VARIANT_BOOL * Value);
 [propget]
 HRESULT _stdcall HostName([out, retval] BSTR * Value);
 [propget, id(0x00000004)]
 HRESULT _stdcall HostPort([out, retval] long * Value);
 [propget, id(0x00000005)]
 HRESULT _stdcall CCOWState([out, retval] EnumCCOWState * Value);
 [id(0x00000006)]
 HRESULT _stdcall CCOWJoin([out, retval] VARIANT_BOOL * Value);
 [id(0x00000007)]
 HRESULT _stdcall CCOWLeave(void);
 [id(0x00000008)]
 HRESULT _stdcall CallRPCList([in] BSTR RPCName, [in] VARIANT Params, [out, retval] BSTR * Value);
 [id(0x00000009)]
 HRESULT _stdcall CallRPCText([in] BSTR RPCName, [in] VARIANT Params, [out, retval] BSTR * Value);
 [id(0x0000000A)]
 HRESULT _stdcall CallRPCStr([in] BSTR RPCName, [in] VARIANT Params, [out, retval] BSTR * Value);
 [id(0x0000000B)]
 HRESULT _stdcall CallRPCInt([in] BSTR RPCName, [in] VARIANT Params, [out, retval] long * Value);
 [id(0x0000000C)]
 HRESULT _stdcall CallRPCBool([in] BSTR RPCName, [in] VARIANT Params, [out, retval] VARIANT_BOOL *
Value);
 [id(0x0000000D)]
 HRESULT _stdcall CallRPCDate([in] BSTR RPCName, [in] VARIANT Params, [out, retval] DATE * Value);
 [id(0x0000000E)]
 HRESULT _stdcall CallRPCAsync([in] BSTR RPCName, [in] VARIANT Params, [in] ICSS_SessionEvents *
CallBack, [in] VARIANT_BOOL PlainText, [out, retval] long * Value);
 [id(0x0000000F)]
 HRESULT _stdcall CallRPCAbort([in] long Handle);
 [id(0x00000010)]
 HRESULT _stdcall RegisterObject([in] IUnknown * ObjRef);
 [id(0x00000011)]
 HRESULT _stdcall UnregisterObject([in] IUnknown * ObjRef);
 [id(0x00000012)]
 HRESULT _stdcall ReplaceParams([in] BSTR Source, [out, retval] BSTR * Value);
 [id(0x00000013)]
 HRESULT _stdcall FindObjectByCLSID([in] GUID CLSID, [in] IUnknown * Last, [out, retval] IUnknown **
Value);
 [id(0x00000014)]
 HRESULT _stdcall FindObjectByProgID([in] BSTR ProgID, [in] IUnknown * Last, [out, retval] IUnknown
** Value);
 [id(0x00000015)]
 HRESULT _stdcall FindObjectByIID([in] GUID IID, [in] IUnknown * Last, [out, retval] IUnknown **
Value);
 [id(0x00000016)]
 HRESULT _stdcall FindServiceByCLSID([in] GUID CLSID, [out, retval] IUnknown ** Value);
 [id(0x00000017)]
 HRESULT _stdcall FindServiceByProgID([in] BSTR ProgID, [out, retval] IUnknown ** Value);
 [id(0x00000019)]
 HRESULT _stdcall EventSubscribe([in] BSTR EventType, [in] ICSS_SessionEvents * CallBack);

November 8, 2001 51 Version 1.0

VueCentric Technical Specification

 [id(0x0000001A)]
 HRESULT _stdcall EventUnsubscribe([in] BSTR EventType, [in] ICSS_SessionEvents * CallBack);
 [id(0x0000001B)]
 HRESULT _stdcall EventFireLocal([in] BSTR EventType, [in] BSTR EventStub);
 [id(0x0000001C)]
 HRESULT _stdcall EventFireRemote([in] BSTR EventType, [in] BSTR EventStub, [in] BSTR Recipients);
 [propget, id(0x0000001D)]
 HRESULT _stdcall DebugMode([out, retval] VARIANT_BOOL * Value);
 [propput, id(0x0000001D)]
 HRESULT _stdcall DebugMode([in] VARIANT_BOOL Value);
 [propget, id(0x0000001E)]
 HRESULT _stdcall HostDateTime([out, retval] DATE * Value);
 [id(0x0000001F)]
 HRESULT _stdcall ContextChangeBegin(void);
 [id(0x00000020)]
 HRESULT _stdcall ContextChangeEnd(void);
 [propget, id(0x00000003)]
 HRESULT _stdcall DomainName([out, retval] BSTR * Value);
 };

 [uuid(8010CCA9-D6B6-4C0D-8618-3D96456486E2),
 version(1.0),
 dual,
 oleautomation
]
 interface ICSS_SessionEvents: IDispatch
 { [id(0x00000001)]
 HRESULT _stdcall RPCCallback([in] long Handle, [in] BSTR Data);
 [id(0x00000002)]
 HRESULT _stdcall RPCCallbackError([in] long Handle, [in] long ErrorCode, [in] BSTR ErrorText);
 [id(0x00000003)]
 HRESULT _stdcall EventCallback([in] BSTR EventType, [in] BSTR EventStub);
 };

 [uuid(C1FDFB04-000C-48A0-97E6-6E7D5861003E),
 version(1.0),
 helpstring("Session Object"),
 noncreatable
]
 coclass CSS_Session
 { [default] interface ICSS_Session;
 [default, source] interface ICSS_SessionEvents;
 };

 [uuid(C4B85076-DC45-4470-9E7C-5471ED7074DC),
 version(1.0),
 dual,
 oleautomation
]
 interface ICSS_Server: IDispatch
 { [propget, id(0x00000001)]
 HRESULT _stdcall Session([out, retval] ICSS_Session ** Value);
 };

 [uuid(8C061A95-8FCE-41A7-A806-66B02E5CE6EF),
 version(1.0)
]
 coclass CSS_Server
 {[default] interface ICSS_Server;
 };

 [uuid(3414C32D-952D-4529-96B4-A96FD60BB8B9),
 version(1.0),
 dual,
 oleautomation
]
 interface ICSS_Context: IDispatch
 { [propget, id(0x00000001)]
 HRESULT _stdcall ContextName([out, retval] BSTR * Value);
 [id(0x00000002)]
 HRESULT _stdcall GetContext([in] VARIANT_BOOL Pending, [out, retval] BSTR * Value);

November 8, 2001 52 Version 1.0

VueCentric Technical Specification

November 8, 2001 53 Version 1.0

 [id(0x00000003)]
 HRESULT _stdcall SetContext([in] BSTR Context, [out, retval] VARIANT_BOOL * Value);
 [id(0x00000004)]
 HRESULT _stdcall CommitContext([in] VARIANT_BOOL Accept);
 [propget, id(0x00000005)]
 HRESULT _stdcall Pending([out, retval] VARIANT_BOOL * Value);
 [propget, id(0x00000006)]
 HRESULT _stdcall Priority([out, retval] long * Value);
 [propget, id(0x00000007)]
 HRESULT _stdcall CallBack([out, retval] GUID * Value);
 [id(0x00000008)]
 HRESULT _stdcall Init(void);
 [id(0x00000009)]
 HRESULT _stdcall Reset(void);
 };

 [uuid(5A180A55-1175-4018-9F70-819039496C46),
 version(1.0),
 dual,
 oleautomation
]
 interface ICSS_ContextEvents: IDispatch
 { [id(0x00000001)]
 HRESULT _stdcall Pending([in] VARIANT_BOOL Silent, [out, retval] BSTR * Value);
 [id(0x00000002)]
 HRESULT _stdcall Committed(void);
 [id(0x00000003)]
 HRESULT _stdcall Canceled(void);
 };

 [uuid(911F8FF9-A941-42EF-8BCB-E87B8C87F71F),
 version(1.0)
]
 typedef enum tagEnumCCOWState
 { ccowBroken = 0,
 ccowChanging = 1,
 ccowJoined = 2,
 ccowNone = 3,
 ccowDisabled = 4
 } EnumCCOWState;

};

	Table of Contents
	Introduction
	Architecture
	Visual Interface Manager
	Command Line Parameters
	autologin
	blank
	caption
	debug
	host=<hostname>:<port>
	icon=<filename>
	image=<filename>
	noccow
	nocompose
	nodesign
	nojoin
	notimeout
	noupdate
	port=<port number>
	server=<hostname>:<port>
	showflags
	template=<template>
	updateall
	verbose

	VIM Automation Object
	Properties
	Access

	BringToFront
	Popup

	Component Support Services
	Server Automation Object
	Properties
	Access

	Session Automation Object
	Properties
	Access

	CallRPCAbort
	CallRPCAsync
	CallRPCBool
	CallRPCDate
	CallRPCInt
	CallRPCList
	CallRPCStr
	CallRPCText
	CCOWJoin
	CCOWLeave
	Connect
	ContextChangeBegin
	ContextChangeEnd
	Disconnect
	FindObjectByCLSID
	FindObjectByIID
	FindObjectByProgID
	FindServiceByCLSID
	FindServiceByProgID
	EventFireLocal
	EventFireRemote
	EventSubscribe
	EventUnsubscribe
	RegisterObject
	ReplaceParams
	
	
	Session.<property>
	Param.<name>
	<object>.<property>

	UnregisterObject

	ICSS_SessionEvents
	EventCallback
	RPCCallback
	RPCCallbackError

	ICSS_Context
	Properties
	Access

	CommitContext
	GetContext
	Init
	Reset
	SetContext

	User Context Object
	Properties
	Access

	HasKey
	HasKeys
	ESigValidate

	Patient Context Object
	Properties
	Access

	Encounter Context Object
	Properties
	Access

	Prepare

	Site Context Object
	Properties
	Access

	Context Change Events
	Pending
	Committed
	Canceled

	Global Object Registry
	Template Registry
	
	TObjectContainer
	TPanelEx
	TScrollBoxEx
	TLabelEx
	TToolbarEx
	TPageControlEx
	TTabSheetEx
	TSplitterPaneEx
	TPaneEx
	TTreeViewEx
	TTreePaneEx

	Object Repository
	Glossary
	MIDL Specification
	Visual Interface Manager
	Component Support Services

